- MAIN, P., WOOLFSON, M. M., LESSINGER, L., GERMAIN, G.
 & DECLERCQ, J. P. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MATHEW, M. & PALENIK, G. J. (1971). J. Am. Chem. Soc. 93, 497–502.
- MORIMOTO, C. N. & MEYER, E. F. JR (1976). Crystallographic Computing Techniques, edited by F. R AHMED, pp. 488–496. Copenhagen: Munksgaard.
- PAI, V. S. & MAYNERT, E. W. (1972). Mol. Pharmacol. 8, 82–87.

- PAXTON, K. & HAMOR, T. A. (1977). Acta Cryst. B33, 2143-2146.
- PENN, R. E. & CURL, R. F. JR (1971). J. Chem. Phys. 55, 651–658.

PORTOGHESE, P. S. (1967). J. Med. Chem. 10, 1057-1063.

- SWANSON, S. M., ROSENFIELD, R. E. JR & MEYER, E. F. JR (1982). J. Appl. Cryst. 15, 439–442.
- TRIGGLE, D. J. (1970). *Medicinal Chemistry* II, edited by A. BURGER, pp. 1235–1295. New York: Wiley–Interscience.
- WEINER, N. & JARDETZKY, O. (1964). Arch. Exp. Pathol. Pharmakol. 248, 308-318.

Acta Cryst. (1982). B38, 2834–2838

Structures of Diazapolycyclic Compounds. VII. 1,4-Diphenyl-1,4-dihydrobenzo[g]pyridazino[1,2-b]phthalazine-6,13-dione and 1,4-Dihydrobenzo[g]pyridazino[1,2-b]phthalazine-6,13-dione

BY M. C. APREDA, C. FOCES-FOCES, F. H. CANO AND S. GARCÍA-BLANCO

Departamento de Rayos X, Instituto de Química-Física 'Rocasolano', Serrano 119, Madrid 6, Spain

(Received 20 October 1981; accepted 10 May 1982)

Abstract

Crystal data: (I) $C_{28}H_{20}N_2O_2$, $M_r = 416.48$, C2/c, a = 20.2629 (5), b = 7.3456 (1), c = 28.9414 (20) Å, $\beta = 106.77$ (1)°, V = 4124.5 (4) Å³, Z = 8, $D_x = 1.34$ Mg m⁻³; (II) $C_{16}H_{12}N_2O_2$, $M_r = 264.28$, $P2_12_12_1$, a = 24.2169 (10), b = 12.5360 (40), c = 3.9942 (1) Å, V = 1212.6 (4) Å³, Z = 4, $D_x = 1.45$ Mg m⁻³. The structures have been solved by direct methods and refined by least-squares procedures. Final *R* values are 0.044 ($R_w = 0.051$) and 0.039 ($R_w = 0.048$) for 2738 and 1092 observed reflections for I and II respectively. The geometries of the two compounds were compared by half-normal probability plots, the pyridazine rings presenting different conformations.

Introduction

This work belongs to a series of studies designed to clarify some possible pharmacological activity in analogues of tetracyclines (Apreda, Foces-Foces, Cano & García-Blanco, 1980). It was undertaken to investigate the possible modification, from compound II to I, of the pyridazine ring, due to the presence of substituents.

0567-7408/82/112834-05\$01.00

Experimental and refinement methods

Experimental data and structure solution parameters are summarized in Table 1 together with the refinement procedures. Figs 1(a) and 1(b) display ORTEP drawings (Johnson, 1965) with the atomic numbering. In Tables 2 and 3 are shown the coordinates for I and II respectively. The bond distances and angles are listed in Tables 4 and 5. Some torsion angles are given in © 1982 International Union of Crystallography TT

Table 1. Experimental data and structure refinement parameters

T

Table 2. Atomic parameters for $C_{28}H_{20}N_2O_2$ $U_{\rm eq} = \frac{1}{3} \sum_i \sum_j a_i^* a_j^* a_i a_j \cos(a_i a_j) \dot{\rm A}^2 \times 10^4.$

Thermal parameters for H as exp $[-8\pi^2 U(\sin \theta/\lambda)^2]$ Å² × 10³.

	1	11		
Unit cell determination	Least squa	res fit from		
	95 .	54		
	reflexions w	with $\theta < 45^{\circ}$		
Crystal size (mm)	$0.45 \times 0.11 \times 0.29$	$0.35 \times 0.07 \times 0.07$		
Stability	No significa	int variation		
Technique and geometry	Four circle diffract	ometer (Philips PW		
	1100) with graphit	te monochromated		
	radiation: ω/	2θ scan mode		
Radiation	Cu	Ka		
$\mu ({\rm mm}^{-1})$	0.6376	0.7496		
Total measurement, up to $\theta(\circ)$	65	65		
Number of independent reflexions	3287	1267		
Criterion for observed reflexions	$I > 2\sigma(I)$	$I > 2\sigma(I)$		
Number of observed reflexions	2738	1092		
Atomic scattering factors	International 7	Tables for X-ray		
U	Crystallogr	aphy (1974)		
Computer programs	XRAY 7	0 system		
	(Stewart, Kundell & Baldwin, 1970)			
Solution	MULTAN	78 system		
	(Main, Hull, Les	singer, Germain,		
	Declercq & W	oolfson, 1978)		
Refinement method	Block diagonal	on observed F's		
H atoms	From differe	nce synthesis		
Parameters refined				
Non hydrogen atoms	(coordinates a	and anisotropic		
	temperatu	re factors)		
	288	180		
Hydrogen atoms	(coordinates and is	otropic temperature		
	fact	tors)		
	80	48		
Extinction correction	Not a	pplied		
Number of reflexions per parameter	7	5		
Weighting scheme	Empirical fit so as $(wA^2F) w fF$	to give no trends in $\overline{\zeta}$ or $\langle \sin \theta / \lambda \rangle$		
Final electron density (e $Å^{-3}$)	0.10	0.12		

Fig. 1. ORTEP drawing of (a) I and (b) II showing the atomic numbering.

	x	У	Z	$U_{ m eq}/U$
C(1)	0.24546(10)	0.3051(3)	-0.11081(7)	443 (6)
C(1E)	0.23448 (9)	0.1735 (3)	-0.15304 (6)	438 (6)
C(2E)	0.17527 (12)	0.1746 (4)	-0.19109 (8)	619 (8)
C(3E)	0.16952 (16)	0.0612 (4)	-0.23052 (10)	764 (10)
C(4E)	0.22261 (16)	-0.0519 (4)	-0.23213(10)	738 (11)
C(5E)	0.28186 (16)	-0.0512 (4)	-0·19481 (10)	723 (10)
C(6E)	0.28787 (12)	0.0609 (3)	-0·15543 (8)	598 (8)
C(2)	0.24826 (11)	0-4935 (3)	-0.12926 (7)	533 (7)
C(3)	0.20415 (12)	0.6219 (3)	-0·12876 (8)	586 (8)
C(4)	0.14669 (12)	0.6002 (3)	0.10651 (7)	526 (7)
C(1F)	0.07677(11)	0.6070 (3)	-0.14365 (7)	565 (7)
C(2F)	0.05203 (20)	0.7771 (5)	-0·16161 (10)	897 (13)
C(3F)	-0·01047 (29)	0.7916 (8)	−0 ·19499 (14)	1233 (20)
C(4F)	<i>−</i> 0·05080 (19)	0.6402 (9)	-0.21113 (12)	1201 (20)
C(5F)	-0.02645 (15)	0-4708 (7)	0.19370 (11)	972 (14)
C(6F)	0.03780 (12)	0-4548 (4)	<i>−</i> 0·15972 (9)	694 (9)
N(5)	0.15600 (8)	0-4386 (2)	-0-07541 (5)	454 (5)
C(6)	0.11551 (10)	0-4328 (2)	<i>−</i> 0·04466 (6)	444 (6)
C(6a)	0.11621 (9)	0.2645 (2)	-0·01726 (6)	406 (5)
C(7)	0.07673 (10)	0.2534 (3)	0.01411 (6)	429 (6)
C(7a)	0.07514 (9)	0.0916(2)	0.03978 (6)	417 (6)
C(8)	0.03473 (11)	0.0754 (3)	0.07236 (7)	508 (7)
C(9)	0.03390 (12)	-0.0837(3)	0.09598(8)	571 (7)
C(10)	0.07217 (11)	-0.2358(3)	0.08880(7)	540 (7)
C(11)	0.11224 (11)	-0.2245(3)	0.05825(7)	479 (6)
C(IIa)	0.11504 (9)	-0.0606(2)	0.03304(6)	415 (5)
C(12)	0-15586 (10)	-0.0443(3)	0.00120 (6)	422 (6)
C(12a)	0.15591 (9)	0.1148(2)	-0.02387(6)	402 (5)
C(13)	0.19837(9)	0.1282(2)	-0.05733(6)	426 (6)
N(14)	0-19168 (8)	0.28246(19)	-0.08529(5)	429 (5)
O(15)	0.08001(8)	0.30309(18)	-0.04182(3)	592 (5)
U(10)	0.23840(8)	0.00790(19) 0.268(3)	-0.0862(7)	16 (5)
$\Pi(1)$ $\Pi(2E)$	0.2900(11) 0.1411(15)	0.208(3) 0.250(4)	-0.1014(9)	10(3)
$\Pi(2E)$ $\Pi(2E)$	0.1203(18)	0.239(4) 0.071(5)	-0.2560(13)	62 (9)
H(JE)	0.2104(15)	-0.133(4)	-0.2600(13)	59 (8)
H(5E)	0.3188(20)	-0.136(5)	-0.1963(13)	76 (10)
H(6E)	0.3299(14)	0.055(4)	-0.1279(10)	52 (7)
H(2)	0.2853(13)	0.512(3)	-0.1448(9)	35 (6)
H(3)	0.2071(14)	0.739(4)	-0.1420(10)	49 (7)
H(4)	0.1494(13)	0.702 (4)	-0.0842 (10)	42 (7)
H(2F)	0.0817(28)	0.896 (8)	-0.1494 (20)	130 (18)
H(3F)	-0.0299 (27)	0.915 (8)	-0.2089(19)	120 (16)
H(4F)	-0.0918(20)	0.665 (6)	-0.2341 (14)	92 (12)
H(5F)	-0.0486 (20)	0.360 (5)	-0.2030 (13)	73 (11)
H(6F)	0.0547 (15)	0.333 (4)	-0.1470 (11)	53 (8)
H(7)	0.0501 (12)	0.354 (3)	0.0176 (8)	23 (5)
H(8)	0.0095 (14)	0.179 (4)	0.0767 (9)	37 (6)
H(9)	0.0078 (14)	<i>−</i> 0·095 (4)	0.1187 (10)	41 (6)
H(10)	0.0687 (13)	-0.350 (4)	0.1049 (9)	41 (6)
H(11)	0.1382 (12)	-0·322 (3)	0.0536 (8)	25 (5)
H(12)	0.1834(11)	-0.146 (3)	-0.0031 (7)	19 (5)

Table 6. Conformational parameters for the pyridazine rings are given in Tables 7 and 8.*

Discussion

Compounds I and II have been compared by halfnormal probability plots (Abrahams & Keve, 1971);

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36949 (34 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 3. Atomic parameters for $C_{16}H_{12}N_2O_2$

Table 4. Bond distances (Å) for
$$C_{28}H_{20}N_2O_2$$
 (I) and $C_{16}H_{12}N_2O_2$ (II)

П

I

11

1

$U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} a_{i}^{*} a_{j}^{*} a_{i} a_{j} \cos(a_{i} a_{j}) \dot{A}^{2} \times 10^{4}.$	
Thermal parameters for H as exp $\left[-8\pi^2 U(\sin\theta/\lambda)^2\right] \dot{A}^2 \times 10^3$	

	x	у	Ζ	$U_{ m eq}/U$	C(1)-C(1E)	1.523 (3)		C(9)–C(10)	1.409 (3)	1.387 (6
C(A)	0.24224 (14)	0.13715 (22)	0.1457(11)	550(11)	C(1) - C(2)	1.490 (3)	1.464 (5)	C(10) - C(11)	1.365 (3)	1.370 (5
C(4)	0.24334(14) 0.20129(12)	0.13713(22) 0.21272(24)	-0.1437(11) 0.2574(10)	565 (10)	C(1) = N(14) C(1E) = C(2E)	1.492 (3)	1.409 (4)	C(11) - C(11a)	1.417(3)	1.410 (3
C(3)	0.20120(13)	0.21272(24) 0.21686(24)	-0.2374(10)	554 (11)	C(1E) = C(2E)	1.379 (3)		C(12) - C(12)	1.375 (3)	1.373 (4
C(2)	0.20001(12) 0.25385(12)	0.31000(24) 0.36673(21)	-0.2113(10)	542 (11)	C(2E) - C(3E)	1.391(4)	_	C(12a) - C(13)	1.472(3)	1.469 (4
	0.23383(13)	0.30073(21)	0.0309 (10)	343 (11) 427 (7)	C(3E) - C(4E)	1.371 (5)	_	C(13) - N(14)	1.376 (2)	1-353 (4
N(14)	0.29393(9)	0.29230(10)	0.0742(7)	457(7)	C(4E)-C(5E)	1.364 (4)	_	C(13)-O(16)	1.229 (2)	1.237 (3
C(13)	0.33998(11)	0.33047(19)	0.2300(9)	459 (9)	C(5E)-C(6E)	1.383 (4)	—			
C(12a)	0-38/55(11)	0.26/3/(19)	0.3010(7)	414 (8)	C(2)-C(3)	1.302 (3)	1.323 (4)	C(1) - H(1)	1.02 (2)	—
C(12)	0.43296 (12)	0.30759 (22)	0.4637 (8)	473 (9)	C(3)-C(4)	1-493 (4)	1.461 (5)	C(2E)-H(2E)	0.93 (3)	—
C(11a)	0.47974 (11)	0.24405(23)	0.5252 (8)	463 (9)	C(4)-C(1F)	1.512 (3)		C(3E)-H(3E)	0.93 (3)	-
C(11)	0-52731 (14)	0.28404 (30)	0.6853 (9)	600 (12)	C(4) - N(5)	1.469 (2)	1.464 (4)	C(4E) - H(4E)	0.99(3)	—
C(10)	0.57164 (14)	0.21867 (34)	0.7429 (10)	674 (13)	C(1F) - C(2F)	1.390 (4)		C(5E) - H(5E)	0.98(4)	_
C(9)	0.57105 (14)	0.11253 (33)	0.6445 (10)	665 (13)	C(1F) = C(0F)	1.370 (3)		C(0L) = H(0L)	0.99(2)	0 02 (2)
C(8)	0.52637 (13)	0.07121 (30)	0.4850 (10)	604 (11)	C(2F) = C(3F)	1.379 (8)	_	C(3) = H(3)	0.99(3)	0.95 (3)
C(7a)	0-47874 (11)	0.13533 (22)	0.4186 (8)	471 (9)	C(4F) - C(5F)	1.379(8)	-	C(4) - H(4)	0.98(3)	
C(7)	0.43194 (12)	0.09583 (21)	0.2536 (8)	472 (9)	C(5F)-C(6F)	1.392 (3)	_	C(2F)-H(2F)	1.06 (6)	
C(6a)	0.38714 (11)	0.15984 (19)	0.1919 (8)	407 (8)	N(5)-C(6)	1-374 (3)	1.364 (3)	C(3F)-H(3F)	1.02 (5)	—
C(6)	0.33853 (11)	0.11688 (19)	0.0215 (8)	433 (8)	N(5)-N(14)	1-428 (2)	1.425 (3)	C(4F)-H(4F)	0.92 (4)	—
N(5)	0.29576 (9)	0.18483 (15)	-0.0412(7)	440 (7)	C(6)-C(6a)	1-467 (2)	1-462 (4)	C(5F)-H(5F)	0.93 (4)	
O(16)	0.33914(9)	0.43226 (14)	0.3044 (7)	626 (8)	C(6)-O(15)	1.226 (2)	1.236 (3)	C(6F)-H(6F)	0.99(3)	
O(15)	0.33455 (8)	0.02239 (13)	-0.0633 (7)	575 (7)	C(6a) = C(7)	$1 \cdot 3 / 5 (3)$	$1 \cdot 3/2(4)$	C(7) - H(7)	0.94(3)	0.99(3)
H(4A)	0.249(2)	0.089(3)	-0.317(11)	52 (12)	C(0a) - C(12a)	1.407 (3)	1.417(4)	C(8) - H(8) C(0) = H(0)	0.95(3)	0.90(4)
H(4B)	0.229(2)	0.086(4)	0.043(13)	67 (14)	$C(7_{2}) = C(8)$	1.421 (3)	1.431 (4)	C(10) = H(10)	0.97(3)	0.90 (4)
H(3)	0.168(1)	0.183(3)	-0.351(10)	35 (9)	C(7a) - C(11a)	1.426(3)	1.428(4)	C(10) - H(10)	0.92(3)	0.91(4)
H(2)	0.181(1)	0.364(3)	-0.312(10)	38 (10)	C(8) - C(9)	1.357 (3)	1.358 (5)	C(12) - H(12)	0.96 (2)	1.02 (3)
H(1A)	0.244(2)	0.412(3)	0.144(11)	53 (12)				C(1) - H(1A)		0.99 (4)
H(1R)	0.277(2)	0.416(3)	-0.223(12)	64 (13)				C(1) - H(1B)	—	1.08 (4)
H(12)	0.434(1)	0.386(2)	0.528 (9)	27 (8)				C(4)-H(4A)		0.92 (4)
H(11)	0.529(1)	0.355(2)	0.733(11)	40 (10)				C(4) - H(4B)		1.05 (5)
	0.601(2)	0.248(3)	0.840(10)	46 (12)						
H(0)	0.601(2)	0.070(3)	0.684(10)	$\frac{1}{17}(12)$						
L(9)	0.577(1)	0.001(3)	0.004(10)	$\frac{1}{54}$ (11)						
11(0)	0.322(2)	-0.001(3)	0.413(12)	$\frac{34}{12}$						
$\mathbf{n}(H)$	0.431(1)	0.021(3)	0.100(3)	31 (9)						

Table 5. Bond angles (°) for the heavy atoms for $C_{28}H_{20}N_2O_2$ (I) and $C_{16}H_{12}N_2O_2$ (II)

	Ι	II		I	II
C(2)-C(1)-N(14)	112.9 (2)	115.3 (3)	N(5)-C(6)-O(15)	119.4 (2)	119.3 (3)
C(1E)-C(1)-N(14)	111.6(2)		N(5)-C(6)-C(6a)	117.5(2)	117.8 (2)
C(1E) - C(1) - C(2)	108.3 (2)		C(6a) - C(6) - O(15)	123.1 (2)	122.9 (3)
C(1)-C(1E)-C(6E)	119.1 (2)	_	C(6)-C(6a)-C(12a)	120.1(2)	119.9 (2)
C(1)-C(1E)-C(2E)	122.0(2)		C(6) - C(6a) - C(7)	119.4 (2)	120.3 (3)
C(2E)-C(1E)-C(6E)	118.6 (2)		C(7) - C(6a) - C(12a)	120.5 (2)	119.7 (3)
C(1E)-C(2E)-C(3E)	120.1(2)	—	C(6a) - C(7) - C(7a)	120.4 (2)	$121 \cdot 2(3)$
C(2E)-C(3E)-C(4E)	120.7 (2)	_	C(7) - C(7a) - C(11a)	119.3 (2)	119.4 (3)
C(3E)-C(4E)-C(5E)	119.4 (3)		C(7) - C(7a) - C(8)	121.8 (2)	122.7 (3)
C(4E)-C(5E)-C(6E)	120.2 (3)	—	C(8)-C(7a)-C(11a)	118.9 (2)	117.9 (3)
C(1E)-C(6E)-C(5E)	121.0 (2)	—	C(7a) - C(8) - C(9)	120.0(2)	121.0 (3)
C(1)-C(2)-C(3)	124.8 (2)	123.4 (3)	C(8)-C(9)-C(10)	121.4 (2)	120.5 (4)
C(2)-C(3)-C(4)	123.4 (2)	122.5 (3)	C(9)-C(10)-C(11)	120.2 (2)	121.2 (4)
C(3)-C(4)-N(5)	111.9 (2)	115.3 (3)	C(10)-C(11)-C(11a)	120.3 (2)	120.3 (3)
C(3)-C(4)-C(1F)	112.2 (2)	_	C(7a) - C(11a) - C(11)	119.2 (2)	119.2 (3)
C(1F) - C(4) - N(5)	113.0 (2)	_	C(11)-C(11a)-C(12)	121.8 (2)	122.4 (3)
C(4)-C(1F)-C(6F)	123.0 (2)	—	C(7a) - C(11a) - C(12)	119.0 (2)	118.3 (3)
C(4)-C(1F)-C(2F)	117.3 (2)		C(11a)-C(12)-C(12a)	120.5(2)	121.3(3)
C(2F)-C(1F)-C(6F)	119.7 (2)	—	C(6a) - C(12a) - C(12)	120.3 (2)	120.0 (3)
C(1F)-C(2F)-C(3F)	119.9 (4)		C(12)-C(12a)-C(13)	119.6 (2)	120.2 (3)
C(2F)-C(3F)-C(4F)	121.2 (5)		C(6a) - C(12a) - C(13)	120.2 (2)	119.8 (3)
C(3F)-C(4F)-C(5F)	119.3 (4)	—	C(12a)-C(13)-O(16)	122.9 (2)	122.6 (3)
C(4F)-C(5F)-C(6F)	119.9 (4)	_	C(12a)-C(13)-N(14)	117.7 (2)	117.8 (3)
C(5F)-C(6F)-C(1F)	120.1 (3)		N(14)–C(13)–O(16)	119.4 (2)	119.6 (3)
C(4)–N(5)–N(14)	120.6 (2)	118.8 (2)	N(5)-N(14)-C(13)	120.9 (2)	122.6 (2)
C(4)-N(5)-C(6)	115.3 (2)	117.1 (2)	C(1)-N(14)-C(13)	114.9 (2)	116.4 (3)
C(6)-N(5)-N(14)	122.5 (2)	121.9 (2)	C(1)-N(14)-N(5)	119.6 (1)	119.2 (2)

Table 6. Torsion angles (°) for the (a) pyridazine and(b) diazaquinonic rings

<i>(a)</i>	Ι	II
C(1)-C(2)-C(3)-C(4)	4.0 (4)	1.2 (5)
C(2)-C(3)-C(4)-N(5)	$14 \cdot 2(3)$	$-3 \cdot 1$ (5)
C(3)-C(4)-N(5)-N(14)	-29.7(2)	16.5 (4)
$(\varphi_0) C(4) - N(5) - N(14) - C(1)$	27.7 (2)	-23.1 (4)
N(5)-N(14)-C(1)-C(2)	$-8 \cdot 1$ (2)	25.0 (4)
N(14) - C(1) - C(2) - C(3)	-7.6 (3)	-11.8 (5)
<i>(b)</i>		
C(13)-N(14)-N(5)-C(6)	$-13 \cdot 1$ (2)	5.2 (4)
N(14) - N(5) - C(6) - C(6a)	7.1(2)	-4·3 (4)
N(5)-C(6)-C(6a)-C(12a)	-1·6 (3)	3.0 (4)
C(6)-C(6a)-C(12a)-C(13)	1.7 (3)	-2.5 (4)
C(6a) - C(12a) - C(13) - N(14)	-7.1(2)	3.2 (4)
C(12a) - C(13) - N(14) - N(5)	12.5 (2)	-4·4 (4)

 Table 7. Distortion parameters for the 'amide groups' around N(5) and N(14)

 $\omega_1 = \omega(C_1C'NC_2), \omega_2 = \omega(OC'NN'), \omega_3 = \omega(OC'NC_2), \omega_4 = \omega(C_1C'NN')$

 $\chi_{\rm N} = \omega_2 - \omega_3 + \pi = -\omega_1 + \omega_4 + \pi \pmod{2\pi}$

 $\chi_{\rm C}=\omega_1-\omega_3+\pi=-\omega_2+\omega_4+\pi\ ({\rm mod}\ 2\pi).$

 $\chi_{\rm N}$ and $\chi_{\rm C}$ are parameters which describe the deviations from planarity of the 'amide group' in the nitrogen and carbon atoms respectively; τ is a measure of the mean torsion around the C-N bond; ω_i are the torsion angles around the C-N bond.

	N(5)	N(14)			
	Ι	II	I	II		
χ _N (°)	14.7 (2)	16.9 (3)	24.3 (2)	15.7 (3)		
$\chi_{c}(\circ)$	-1.2(2)	-0.8(3)	0.7(2)	-0.6(3)		
τ(°)	180.4 (2)	176.3 (2)	180.1(2)	176.8 (3)		
N (°)	119.4(2)	119.3 (2)	118.5 (2)	119.4 (2)		

the distance C(1)-C(4) (atoms where the phenyl rings are located in compound I) shows the only significant difference.

From the torsion angles of the pyridazine rings (see Table 6), we have calculated the distortion parameters for the 'amide groups' (Winkler & Dunitz, 1971) around the N(5)–C(6) and C(13)–N(14) bonds. The deformation with respect to sp^2 hybridization is, as usual, greater at nitrogen than at carbon (see Table 7).

The conformations of the pyridazine rings have been described according to a model for flexible six-membered rings (Cano, Foces-Foces & García-Blanco, 1977) (see Table 8). For I, the conformation is midway between the four conformations shown in Table 8 and for II the corresponding ring conformation is a distorted envelope at the C(1)-C(2) and C(2)-C(3) bonds.

In compound II, the diazaquinonic ring is more planar than in I. The attached O atoms, O(15) and O(16), have deviations of -0.080 (3) and 0.072 (3) Å in II and mean deviations of 0.071 (2) and -0.182 (2) Å in I from the plane through the ring.

The angle between the phenyl planes is, on average, $52 \cdot 7$ (2)°.

We thank Dr Pilar Navarro for providing the material and the Junta de Energía Nuclear (Madrid) for computer facilities. We also thank the referee for pointing out a cell reduction which we initially overlooked.

Part of this paper has been supported with a grant given to one of the authors (MCA) by the Instituto de Cooperación Iberoamericana (Madrid).

Table 8. Conformational parameters (°) for the pyridazine rings

 φ_0 is the torsion angle around the N(5)–N(14) bond.

$$(-1)^{j}\tau_{j} = \tau_{m} + q\cos\left[(\Sigma/2) + (2\pi/6)j\right] \qquad 6\tau_{m} = (\varphi_{0} - \varphi_{3}) + (\varphi_{4} - \varphi_{1}) + (\varphi_{2} - \varphi_{3}) \qquad \tan\frac{\Sigma}{2} = \frac{1}{\sqrt{3}}\frac{(\varphi_{1} - \varphi_{3}) + (\varphi_{4} - \varphi_{2})}{(\varphi_{0} + \varphi_{3})}$$

$$q^{2} = \frac{1}{4}(\varphi_{0} + \varphi_{3})^{2} + \frac{1}{12}[(\varphi_{1} - \varphi_{5}) + (\varphi_{4} - \varphi_{2})]^{2} \qquad \alpha_{1} = (\Sigma + \delta)/2, \ \alpha_{2} = (\Sigma - \delta)/2.$$

 τ_m is the mean torsion in the ring; q is the amplitude of pseudorotation in the ring; α_1 , α_2 are pseudorotation phases; Σ is the sum of α_1 and α_2 ; δ is the difference between α_1 and α_2 .

Experimental				Theoretical				
	I	II	Envelope $C(1)-C(2)$, C(2)-C(3)	Diplanar C(1)–C(2), C(3)–C(4)	Diplanar N(14)–C(1), C(3)–C(4)	Boat N(14)–C(1), C(3)–C(4)		
τ_m (°)	11.4 (3)	13.9 (5)	$\frac{\sqrt{3}}{2}q$	<i>q</i> /2	q/2	0		
q (°)	20.2 (2)	15.5 (1)	q	q	q	q		
Σ(°)	70.6 (2)	37.4 (1)	60	0	120	60		
δ(°)	112.1(4)	52.5 (2)	60	120	120	180		
a. (°)	94.4(2)	45.0(1)	30	60	120	120		
$\alpha_2(\circ)$	-17.8(2)	-7.6 (1)	0	-60	0	-60		

References

ABRAHAMS, S. C. & KEVE, E. T. (1971). Acta Cryst. A27, 157–165.

Apreda, M. C., Foces-Foces, C., Cano, F. H. & García-Blanco, S. (1980). *Acta Cryst.* B**36**, 865–869.

CANO, F. H., FOCES-FOCES, C. & GARCÍA-BLANCO, S. (1977). Tetrahedron, 33, 797–802.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Acta Cryst. (1982). B38, 2838-2841

- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J. P. & WOOLFSON, M. M. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- WINKLER, F. K. & DUNITZ, J. D. (1971). J. Mol. Biol. 59, 169–182.

Structure of Bis(5-propylphenazinium)-Tris[2,2'-(2,5-cyclohexadiene-1,4diylidene)bis(propanedinitrile)], (NPP)₂(TCNQ)₃

BY R. HARMS, H. J. KELLER, D. NÖTHE AND D. WEHE

Anorganisch-Chemisches Institut der Universität, Im Neuenheimer Feld 270, D-6900 Heidelberg 1, Federal Republic of Germany

(Received 4 February 1982; accepted 17 May 1982)

Abstract

The title compound, $(C_{15}H_{15}N_2)_2(C_{12}H_4N_4)_3$, (NPP)₂(TCNQ)₃, $M_r = 1059 \cdot 18$, $d_c = 1 \cdot 44$ Mg m⁻³, crystallizes in the triclinic space group $P\bar{1}$ with a = $8 \cdot 913$ (2), $b = 12 \cdot 187$ (4), $c = 13 \cdot 262$ (4) Å, $\alpha =$ $96 \cdot 21$ (2), $\beta = 108 \cdot 13$ (2), $\gamma = 97 \cdot 36$ (2)°, $V = 1340 \cdot 90$ Å³ and Z = 1. All the molecules are planar with the exception of one TCNQ molecule, in which the planes through the =C(CN)₂ groups are slightly inclined with respect to the ring plane. Mixed stacks of NPP dimers and TCNQ trimers occur along the [011] direction. Final refinement yielded R = 0.099 and $R_w = 0.068$ for 1351 reflections. The EPR spectra consist of orientation-dependent *structured* triplet exciton lines.

Introduction

Phenazine, 5-alkylphenazinium salts and the 5-monoor 5,10-dialkylated, 5,10-dihydrophenazines as donors form a wide variety of charge-transfer solids with the acceptor 2,2'-(2,5-cyclohexadiene-1,4-diylidene)bis(propanedinitrile)(7,7,8,8-tetracyano-p-quinodimethane, TCNQ). They differ in stoichiometry and/or in the molecular arrangement of the donors and the acceptors in the crystal lattice. With 1:1 composition typical DADA mixed stacks [as in phenazine (P)-TCNQ (Goldberg & Shmueli, 1973a), 5,10-dihydro-5,10-dimethylphenazine (Me₂P)-TCNQ (Goldberg & Shmueli, 1973b), Me₂P-TCNQF₄ (Soos, Keller,

0567-7408/82/112838-04\$01.00

Ludolf, Queckbörner, Wehe & Flandrois, 1981) and in 5-ethylphenazine(NEP)–TCNQ with σ -bonded 'chain-linking' and $(TCNO)_{2}^{2-}$ units (Morosin. Plastas, Coleman & Stewart, 1978; Harms, Keller, Nöthe, Werner, Gundel, Sixl, Soos & Metzger, 1981)], and π -overlapping dimerized structures with DDAA columns [as in 5-(1-butyl)phenazinium-TCNQF₄ (Metzger, Heimer, Gundel, Sixl, Harms, Keller, Nöthe & Wehe, 1982)] occur. Segregated regular stacks [as in the famous 5-methylphenazine (NMP)-TCNQ (Fritchie, 1966; Kobayashi, 1975) or in the phenazine-doped NEP-TCNQ, Me₂P-TCNQ and 5,10-dihydro-5,10-diethylphenazine (Et₂P)-TCNQ species (Sandman, 1978; Endres, Keller, Moroni & Wehe, 1980; Dietz, Endres, Keller, Moroni & Wehe, 1982)] can be found in 1:1 salts, too.

Only a few solids deviating from a 1:1 composition have been reported (Sanz & Daly, 1975; Dietz, Endres, Keller & Moroni, 1981; Harms, 1980), one of them $[(NMP)_2(TCNQ)_3]$ with a complicated 2:3 lattice (Sanz & Daly, 1975). The latter compound is unique in this series, so far. Herein we report the preparation, X-ray and EPR data of $(NPP)_2(TCNQ)_3$, a compound with a lattice very similar to that of $(NMP)_2(TCNQ)_3$ but with surprising triplet exciton spectra.

Experimental

Chemical preparation

Crystals of $(NPP)_2(TCNQ)_3$ were grown by mixing hot solutions of $(NPP)ClO_4$ (100 mg) in absolute

© 1982 International Union of Crystallography